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Abstract. We analyse and simulate a two-dimensional Brownian multi-type particle system
with death and branching (birth) depending on the position of particles of different types. The
system is confined in a two-dimensional box, whose boundaries act as the sink of Brownian
particles. The branching rate matches the death rate so that the total number of particles is kept
constant. In the case ofm types of particle in a rectangular box of sizea × b and elongated
shapea � b we observe that the stationary distribution of particles corresponds to themth
Laplacian eigenfunction. For smaller elongationsa > b we find a configurational transition to
a new limiting distribution. The ratioa/b for which the transition occurs is related to the value
of the mth eigenvalue of the Laplacian with rectangular boundaries.

1. Introduction

It is remarkable how simple systems with just a few deterministic rules (such as Life [1]
or cellular automata [2]) can generate complex structures. When considering population
dynamics, however, one often uses stochastic models, as the following examples illustrate.
The addition of stochastic factors into the Life game [3] favours diversity of structures,
in contrast to the original model in which diversity is a decreasing function of time.
Introduction of a probabilistic factor in the cellular automata description of the dynamics
of social impact in a population [4] leads to the complex spatial and time intermittent
behaviour. In genome population dynamics [5, 6] one uses stochastic processes such as
super-Brownian motion or Fleming–Viot processes. The model presented in this paper is a
stochastic population dynamics model related to Fleming–Viot processes.

The dynamics of systems with two competing species has been studied with an emphasis
on the influence of spatial heterogeneity on temporal evolution and spatial organization
[7–9]. In the case of strong competition it is typical that only one of the two species survives,
which means, in particular, that average lifetimes of the two species can be different. In
contrast to this situation, we are interested in the spatial distribution of several species when
their average lifetimes are comparable and species coexist in equilibrium.

In our model we consider the long-time behaviour of a population ofm different species
of Brownian particle confined in a two-dimensional box. We choose very simple interactions
among species which guarantee confinement in the box, spatial segregation of species and
long time coexistence. Specifically, we assume that the walls of the box act as sinks for the
particles and we assume that if two particles of different type occupy the same lattice point,
then both are killed. The birth rules are chosen in such a way as to keep the number of
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Figure 1. Nodal lines for stationary distribution of particles of three particle types. Each
region, separated by full lines, is occupied by only one type of particle. (a) The side ratio
r3 = a/b = 1.64; elementary configuration corresponding to the third Laplacian eigenfunction,
(b) r3 = 1.63; configuration close to the transition point (non-elementary configuration), (c)
r3 = 1; configuration far from the transition point (non-elementary configuration).

particles constant at each time step and to ensure that the average lifetime of each species
of particle is the same in the long-time limit. As will be seen, our model corresponds to a
Fleming–Viot-type process in which particle interactions are position dependent. We point
out here, and justify below, that our model leads to a deterministic limiting distribution,
whereas the limiting distributions for super-Brownian motion and Fleming–Viot processes
have a random, fractal nature.

By way of illustration, figure 1 shows the stationary configuration form = 3 types of
particle in a rectangular boxD of size a × b. The side ratioa/b is a critical parameter
in our study. We find that fora/b > 1.63 the particles of different types occupy domains
of rectangular shapes (figure 1(a)). We call this an elementary configuration and show (in
section 5) that it is related to the third Laplacian eigenfunction inD. When the side ratio
decreases below 1.63 the configuration changes its character as shown in figure 1(b) and (c).
Here the domains occupied by distinct species have shapes which are not related to Laplacian
eigenfunctions inD. We call this a configurational transition.

In section 7 we show that the side ratioa/b at the transition can be obtained from
a simple condition involving the third Laplacian eigenvalue ofD. In a natural way our
model provides, in some circumstances, a probabilistic interpretation of the higher Laplacian
eigenfunctions.

The paper is organized as follows. In section 2 we briefly discuss discrete analogues
of super-Brownian motion and Fleming–Viot processes and their relationship to our model.
In sections 3 and 4 we describe our model in detail. The connection between the stationary
state of the model and the Laplacian eigenfunctions is given in section 5 and computer
simulations are described in section 6. The analysis of the configurational transition and
concluding remarks are contained in section 7.

2. Super-Brownian and Fleming–Viot processes: particle systems with death rates
independent of position

Super-Brownian motion and Fleming–Viot processes are usually discussed in the continuous
time and space state setting. We will present their discrete analogues for the purpose of
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comparison with our own model introduced in sections 3 and 4 below. Full details of these
constructions, and much else, are presented in [6] and [11], so we will be brief.

In the first model we consider particles on the two-dimensional square lattice. At every
time stept = 1, 2, 3, . . . , each particle either dies or branches into two offspring, each
with probability 1

2. If the particle branches, both offspring occupy the same lattice site as
the parent particle and then each offspring chooses one of the four neighbour lattice sites
with probability 1

4 and goes there. These events are independent for all the particles in the
population.

Suppose that at timet = 1 the particle system consists ofj particles and every particle
is located at(0, 0). Let X

j
s be a measure-valued process whose value at times is defined as

follows. The measureXj
s (A) of an open subsetA of R2 is equal to the number of particles

at time t = [s] which lie in
√

jA. Here [s] is the integer part ofs. Consider the sequence
of processes{Xj

ju/j, u > 0}j>1 where s = ju and u plays the role of the rescaled time.
This sequence converges asj → ∞ to a measure-valued diffusion called super-Brownian
motion with the initial stateδ(0,0) (mass 1 concentrated at(0, 0)).

There are several existing results showing that this process has a fractal nature in
dimensionsd > 2. For example, at any fixed time, the state of super-Brownian motion is
a random singular measure whose support has Hausdorff dimension 2 [10], for dimensions
d > 2. In other words, the volume occupied by particles in a box of linear sizeL scales as
L2 whenL → 0, irrespective of dimensiond > 2. For d = 1, the limiting distribution of
the process at a fixed time has a continuous density.

The second model differs from the first in that the population size is fixed and equal
to j . The dynamics are now the following. First suppose thatk = 1, 2, . . . , j − 1 and
n > 1. In order to obtain the state of the process at timet = nj + k + 1 from that at
t = nj + k, we choose randomly one particle and kill it. Next, another particle is chosen
from the surviving ones and it branches into two offspring which occupy the same lattice
site as the parent particle. Ift = nj then we obtain the new configuration at timet = nj +1
by letting each of the particles move to one of the four nearest sites on the lattice, with
probability 1

4, independent of all other particles.
We renormalize the system in order to obtain a continuum limit. Suppose that at time

t = 1 the system consists ofj particles located at(0, 0). Let Y
j
s be a measure defined

as in the first model, i.e. the measureY
j
s (A) of an open subsetA of R2 is equal to the

number of particles at timet = [s] which lie in
√

jA. Settings = j2u, the sequence of
processes{Y j

j2u
/j, u > 0}j>1 converges asj → ∞ to a measure-valued diffusion called the

Fleming–Viot process with the initial stateδ(0,0). This process has a similar fractal nature
as super-Brownian motion. Indeed, it is known that the Fleming–Viot processYt is just
super-Brownian motionXt when the latter is conditioned on the eventXt(Rd) = 1; that is,
conditioned to have a constant total mass [16].

Recently there has been growing interest in models incorporating dependence of the
motion of individual particles on the current configuration [11, 12]. We propose to study a
model with a constant population size in which particles can die and branch at rates which
depend on location. It will be seen that the simplest case is when a particle dies if and only
if it moves to a set of designated sites on the lattice. In this way our model differs from
the two described above.

3. Particle system with death rates depending on position

We fix a connected subsetDε of the square lattice with the mesh sizeε, denoted by(εZ)2.
The particles in our model die if they move outsideDε, so Dε plays the role of the state
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space. The number of particles is fixed and equal toj . Transitions from the state of the
system at timet = k to that at timet = k + 1 may be described as follows. First, each
particle goes to one of the four nearest neighbours on the lattice(εZ)2, with probability 1

4,
independent of all other particles. Then all particles which are outsideDε die. An equal
number of particles is chosen uniformly from among the surviving particles. Each of the
chosen particles splits into two offspring which occupy the same site as the parent particle.
Hence, the number of particles in our model is constant between generations.

Fix some open connected setD ⊂ R2 and letDε = D ∩ (εZ)2. Suppose that at time
t = 1 each of thej particles occupies a site inDε. Let X

j,ε
s be the measure-valued process

whose value at times is defined as follows. The measureX
j,ε
s (A) of an open subsetA of

R2 is equal to the number of particles which are inA at time [s].
Below we offer a heuristic argument to show that asj → ∞ with ε = 1/

√
j and

s = s/ε2 thenX
j,ε
s converges to a non-random measureXs having a density and relate the

density, in the limits → ∞, to the first Laplacian eigenfunction inD with zero boundary
values, normalized to have unit integral overD. More precisely, letf (x, y) denote the first
eigenfunction of the Laplacian with zero boundary values inD. Then for every open subset
A ⊂ R2, we have limX

j,ε

s/ε2(A)/j = ∫
A

cf (x, y) dx dy, where 1/c = ∫
D

f (x, y) dx dy.
Thus it appears that the qualitative long-time behaviour of our system is very different

from that of super-Brownian motion or the Fleming–Viot process. A typical configuration
of particles in these models has a fractal nature. Strictly speaking, the limiting continuous
models are measure-valued diffusions whose states are measures supported on fractal
sets [11]. In our model, increasing the number of particlesj and decreasing the mesh
ε of the lattice so thatε = 1/

√
j results, in the long run, in a non-random distribution equal

to a suitably normalized first eigenfunction of the Laplacian onD with zero boundary values.
One physical interpretation of the corresponding first eigenvalueλ1 is as the exponential
rate of decay of the probability that a free Brownian particle remains inD for long times.
The corresponding interpretation of the normalized first eigenfunction is that it represents
the probability distribution, after a long time delay, for a Brownian particle conditioned to
stay within the domain [13]. The asymptotic behaviour of our model gives another, related,
interpretation.

Here is a heuristic argument showing the convergence of distributions in our model.
These remarks are not meant to be a rigorous proof—this does not seem to be trivial and
will be the subject of a forthcoming paper [14].

Notice first that because of the diffusive scalingx → εx and s → ε−2s, each particle,
in the limit ε → 0, executes a Brownian motion inD with a jump, upon exitingD, to a
point occupied by a fellow particle chosen uniformly at random. Second, since particles
interact only through the boundary ofD by a random choice from the remaining particles,
the equal time pair correlations are inversely proportional to the total particle numberj ,
and therefore the particles are uncorrelated in the limitj → ∞. Thus the limiting measure
Xs = limε,j X

ε,j

s/ε2/j exists and is deterministic, by a variant of the law of large numbers.
Let us express this limit via its densityXs(A) = ∫

A
ξ(s; x, y) dx dy. Since all particles

reside inD it follows that ξ(s; x, y) > 0 and it vanishes for points on the boundary ofD.
Let 1/λ(s) be the expected exit time fromD of a Brownian particle with initial

distribution equal toξ(s; x, y) dx dy. Then the per particle rate at which jumps take place
is exactlyλ(s). Thus the densityξ(s; x, y) is the solution of a heat flow problem inD with
a heat source of strengthλ(s)ξ(s; x, y) and absorption at the boundary, i.e.

∂ξ/∂s + 4ξ = λ(s)ξ . (3.1)

Here,4 = −1/2(∂2/∂x2+∂2/∂y2) is the Laplacian. Ass → ∞, the density converges to a
solution of the stationary problem, which is the eigenvalue problem for the Laplacian inD.
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Thus ξ is a non-negative eigenfunction of the Laplacian inD. Because the Laplacian is
self-adjoint, its eigenfunctions are mutually orthogonal. Sinceξ is non-negative, it cannot
be orthogonal to the first eigenfunctionf and therefore must be a scalar multipleξ = cf .
It follows that 1/c = ∫

D
f (x, y) dx dy, sinceξ has total integral 1, and that in equilibrium

the expected exit time fromD is 1/λ1, the reciprocal of the first eigenvalue.

4. Multi-type particle system

The first eigenfunction of the Laplacian with zero boundary values already has a natural
probabilistic interpretation [13] and the model described in the previous section provides a
new one. It seems that so far the higher eigenfunctions do not have a natural probabilistic
interpretation. A model described in this section may be a first step towards such an
interpretation.

Fix a connected subsetDε of the square lattice(εZ)2 with the mesh sizeε. In this
model, each particle will reside inDε and have one ofm possible typesLk, k = 1, 2, . . . , m.
Typically, at each timet = l some particles will be chosen to split into two offspring. In
such a case we will say that a new offspring was born at timet = l and if this particle
is killed at some later timet = n then we will say that the lifetime of this particle was
T = n − l. The transition mechanism of the system, which depends on the positions, types
and lifetimes of the particles, is the following one. First each of the particles goes to one
of the four nearest sites on the lattice(εZ)2, with probability 1

4, independent of all other
particles. Then all particles which moved outsideDε are killed. If a site inDε is occupied
by particles of several types, then two particles of different types are chosen randomly
and are also killed. We repeat the procedure, killing pairs of particles of different type
occupying the same site until there are no sites inDε with more than one type of particle.
Killed particles will be replaced with new offspring as follows. For everyk, we choosenk

(to be defined below) particles of typeLk randomly from among the surviving ones and
each of these particles splits into two offspring of the same type which then occupy the
same site as the parent particle. Now we definenk. Let n1

k be the number of particles of
type Lk which died because they moved outsideDε. Let n2

k be the number of thepairs
of particles which were killed insideDε such that the types and lifetimes of the particles
involved were(Li , T1) and(Lk, T2) andT1 > T2 (i.e. the particle with typeLk had a shorter
lifetime). Let n3

k be defined just asn2
k except that we replace the conditionT1 > T2 with

the conditionT1 = T2. Then we setnk = n1
k + 2n2

k + n3
k. Note that the total number of

particles in our model is constant between generations but the number of particles of type
Lk can vary, for eachk.

Again, we consider the high-density limit distribution for the system. Fix some open
connected setD ⊂ R2, let Dε = D ∩ (εZ)2 and assume that at timet = 1 all particles
occupy sites inDε. Recall that we have a total ofj particles which belong tom different
typesLk. Let the measureXk,j,ε

s of an open subsetA of R2 be equal to the number of
particles of typeLk which are inA at time [s].

Fix m > 2 and D ⊂ R2 and let j → ∞, ε → 0 and s → ∞. In the limit, for
every k, the measureXk,j,ε

s/ε2 (dx, dy)/j will converge tockfk(x, y) dx dy (in other words,

X
k,j,ε

s/ε2 (A)/j → ∫
A

ckfk(x, y) dx dy for every open setA ⊂ R2) where 0< ck < ∞ and
fk is the first eigenfunction of the Laplacian with zero boundary values on a subdomain
Dk of D. Because of the dynamics, particles of different types become segregated so the
subdomainsDk are disjoint and their union isD.
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Our transformation rules have been chosen so that the average lifetimes of particles of
different types are equal in the limit. If at a certain time the average lifetime of particles of
type Lk is smaller than that for typeLn, the collisions of the particles of these two types
will result in an increase of the number of particles of typeLk. This will imply the growth
of the subregionDk occupied by particles of typeLk and hence their average lifetime will
increase. The opposite will be true for the particles of typeLn and so in the limit the
average lifetimes of all types of particle will be the same.

The average lifetime of a particle of typeLk is equal to the inverse of the first eigenvalue
in Dk. Hence, the first eigenvalue for the Laplacian with zero boundary conditions inDk

is the same for everyk, in the limit.
Let (x, y) be a point on the boundary between two subregionsDk and Dn and let

N be the normal unit vector to the boundary at(x, y) pointing insideDk. Note that the
normal unit vectorN̂ at (x, y) pointing insideDn is the same as−N . Then we must have
∂ckfk/∂N = −∂cnfn/∂(N̂) because the particles of both types are killed on the boundary
at the same rate.

5. Limit distribution and Laplacian eigenfunctions

Let F(x, y) dx dy = Fm(x, y) dx dy be equal to the limit ofXk,j,ε

s/ε2 (dx, dy)/j on Dk. In
other words,F(x, y) = ckfk(x, y) on Dk and the constantsck are such that∂ckfk/∂N =
−∂cnfn/∂(N̂) on the boundary betweenDk andDn, whereN is the inward normal vector
on the boundary ofDk and N̂ = −N . Hence,∂F/∂N = −∂F/∂(N̂) on the boundary
betweenDk andDn.

Suppose thatg is an eigenfunction for the Laplacian inD with zero boundary values.
The lines whereg is equal to zero are called ‘nodal lines’ and they divideD into a number of
subregions̃Dk. The functiong is differentiable, so we must have∂|g|/∂N = −∂|g|/∂(N̂)

on the boundary betweeñDk and D̃n. Moreover, |g| is the first eigenfunction for the
Laplacian on every subregioñDk. This suggests thatFm may be equal to|g| for some
eigenfunctiong of the Laplacian inD.

A simple example shows that for someD and m, the limit distributionFm cannot be
equal to|g| for any eigenfunctiong in D. This is the case when an odd number of ‘nodal
lines’ for Fm meet at a single point. The number of nodal lines meeting at one point must
be even for an eigenfunction since the sign of the eigenfunction in adjacent regions defined
by its nodal lines must alternate. There would be no consistent way of assigning signs
to adjacent regions if an odd number of them met at an intersection point of nodal lines.
Figure 1(b) illustrates a limit distribution for a system with three particle types. In this case,
there are three nodal lines forFm which meet at one point and consequentlyFm cannot be
equal to|g| in this case.

One may ask, then, when the limit distributionFm for a multi-type particle system
corresponds to a higher eigenfunction. We concentrated our efforts on one particular class of
domains, namely rectanglesD, because in this case, the eigenvalues and the corresponding
eigenfunctions can be calculated explicitly.

Let D = {(x, y) ∈ R2 : 0 < x < a, 0 < y < b}. Then all eigenvalues of the Laplacian
in D with zero boundary values are given byλj,k = π2[(j/a)2 + (k/b)2], where j and
k are arbitrary integers greater than 0 [15]. The eigenfunction corresponding toλj,k has
the form fj,k(x, y) = sin((jπ/a)x) sin((kπ/b)y). It may happen thatλj1,k1 = λj2,k2 even
thoughj1 6= j2 andk1 6= k2 but this is possible for only a countable number of side ratios
r = b/a. We can also writeλj,k as(π/a)2(j2 + (k/r)2).
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It is clear intuitively that when the number of types of particlem is constant but the side
ratio of D is very large then particles of different types will occupym rectangles arranged in
a linear order (see, for example, figure 1(a)). We will call this arrangement ‘elementary’. It
corresponds to an eigenfunctionfj,k of the Laplacian with eitherj = 1 or k = 1. This effect
is due to the tendency of different populations to segregate and an elementary configuration
seems to be a natural way to achieve maximum segregation. It is not so clear what happens
when the side ratio is moderate. Whenm is fixed, saym = 3, and the side ratio is close
to 1, we obtain in computer simulations a configuration illustrated in figure 1(b) which does
not correspond to any eigenfunction. We determined by simulation the critical side ratio at
which we observe the transition between the elementary configuration and a configuration
which does not correspond to any eigenfunction.

6. Computer simulations

Further discussion of the limiting distributions and eigenvalues will be illustrated by
computer simulations so we make a digression to explain our figures. In all simulations we
took D to be a rectangle. The figures show the regionsD and the boundaries between the
subregions occupied by different particle types. All simulations were done for rectangles
D with sidesb = 100 and 100< a < 300. Because of memory constraints, the results of
the simulations were compressed in the following way. Every regionD was divided into
a number of small identical rectangles, usually with side lengths between 5 and 10. The
numbers of particles of different type were found in every small rectangle and the rectangle
was declared of typeLk if the number of particles of this type was the greatest of all particle
types. Only rectangles close to the boundaries betweenDk ’s contained different particle
types. In our simulations, almost all other rectangles contained only one type of particle.

We simulated the long-time behaviour of a system with 100 000 particles in rectangles of
different side ratios. Most simulations ran for 150 000 or 200 000 time steps. The starting
configurations included ‘elementary configurations’, other configurations with polygonal
separating lines and totally random configurations. We used various initial proportions of
different particle types. We did simulations withm = 3, 4 and 5 particle types. In each case
we determined the critical side ratiorm = a/b at which we observed a transformation of the
stationary configuration from the elementary configuration to a configuration which did not
correspond to an eigenfunction. The simulations were performed in 20 different rectangles.
Due to the time-consuming nature of the simulations, the number of independent samples
varied from one to five per rectangle. The final configurations for the segregation phases
were unique and did not depend on the initial configuration except when the side ratios
were close to the critical values discussed below.

When the number of particle types ism = 3, the critical side ratio is 1.64 ± 0.01
(figure 1). The simulations starting from various initial distributions show that the limit
distribution is elementary for the ratio 1.65 and it is not for the ratio 1.62. In the case of
side length ratios 1.63 and 1.64, the particle configuration had a tendency to preserve its
initial shape if the initial shape was as in figure 1(a) and (b).

The results of the simulations are most clear in the case of four particle types. Each
of the simulations was started from an asymmetric configuration. The critical ratio is
2.26± 0.01. The particle distributions are given in figure 2.

Simulations with five particle types (figure 3) were also started from asymmetric
distributions. In this case, the critical side ratio is 2.85± 0.01.

An ‘asymmetric’ initial configuration is illustrated in figure 4.
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Figure 2. Nodal lines for stationary distribution of particles of four particle types. Each
region, separated by full lines, is occupied by only one type of particle. (a) The side ratio
r4 = a/b = 2.27; elementary configuration corresponding to the fourth Laplacian eigenfunction,
(b) r4 = 2.24; configuration close to the transition point (non-elementary configuration), (c)
r4 = 1; configuration far from the transition point (non-elementary configuration).

Figure 3. Nodal lines for stationary distribution of particles of five particle types. Each
region, separated by full lines, is occupied by only one type of particle. (a) The side ratio
r5 = a/b = 2.88; elementary configuration corresponding to the fifth Laplacian eigenfunction,
(b) r5 = 2.84; configuration close to the transition point (non-elementary configuration), (c)
r5 = 1; configuration far from the transition point (non-elementary configuration).

7. Configurational transition and Laplacian eigenvalues

We will argue that the critical side ratios obtained from the computer simulations match
exceptionally well the critical rectangle side ratios for the following problem.When is it true
that the elementary configuration withm subregions corresponds to themth eigenfunction?
Here we order the eigenfunctions according to their eigenvalues, i.e. themth eigenfunction
corresponds to themth smallest eigenvalue.

Recall the formulae for the eigenvalues of the Laplacian given in section 3. We have
λj,k = (π/a)2(j2 + (k/r)2) for a rectangle with sides equal toa and b and side ratio
r = b/a. The elementary configuration is defined by the eigenfunction corresponding to
λ1,m. Whetherλ1,m is themth eigenvalue depends only onr and does not otherwise depend
on the values ofa andb. Note thatλ1,k < λ1,m for k < m so λ1,m is themth eigenvalue if
and only if
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Figure 4. An ‘asymmetric’ initial configuration with four particle types. Configurations of this
type were used as initial configurations for many simulations.

λ1,m < λ2,1 . (7.1)

This is equivalent to (section 5)

12 + (m/r)2 < 22 + (1/r)2 . (7.2)

We takem = 3, 4, 5 and solve this equation forr to obtain the following critical side
ratiosrm: r3 = √

8/3 ≈ 1.63, r4 = √
5 ≈ 2.24, r5 = 23/2 ≈ 2.83.

Since our simulations were done on a discrete lattice, the critical side ratios calculated
for the rectangleD in R2 are only approximate. Eigenfunctions for the discrete Laplacian
on a rectangleD = {(x, y) ∈ Z2 : 1 6 x 6 a, 1 6 y 6 b} are given byf̃ (x, y) = g(x)h(y)

whereg andh satisfyg(0) = g(a + 1) = 0, h(0) = h(b + 1) = 0, and

g(x − 1) − 2g(x) + g(x + 1) = −̃λxg(x) 1 6 x 6 a

h(y − 1) − 2h(y) + h(y + 1) = −̃λyh(y) 1 6 y 6 b .

Thenλ̃ = λ̃x + λ̃y is the eigenvalue corresponding to the eigenfunctionf̃ (x, y) = g(x)h(y).
If g changes signj − 1 times andh changes signk − 1 times theñλ = λ̃j,k is a discrete
analogue ofλj,k. We have the following explicit formulae for the eigenfunctions and the
corresponding eigenvalues.

gj (x) = sin(jπx/(a + 1))

hk(y) = sin(kπy/(b + 1))

λ̃x
j = 2(1 − cos(jπ/(a + 1)))

λ̃
y

k = 2(1 − cos(kπ/(b + 1))) .

The discrete analogues of inequalities (7.1) and (7.2) are

λ̃m,1 < λ̃1,2

and

cos(mπ/(a + 1)) + cos(π/(b + 1)) > cos(π/(a + 1)) + cos(2π/(b + 1)).
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In the case whereb = 100, the critical values fora in the last inequality are in the following
intervals,

163< a < 164 m = 3

224< a < 225 m = 4

284< a < 285 m = 5 .

These values match very well the critical side lengths discussed in the previous section.
It is quite intriguing that the configurational transition takes place for side ratio related

to the eigenvalue of the Laplacian (equations (7.1) and (7.2)). It would be interesting to
find an explanation for this phenomenon. We hope that our results will be useful in the
future studies of population dynamics.
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